Challenges 2015, 6(2), 188-201
Authors: George Xydis, George Pechlivanoglou, Navid Christian Nayeri
The transition from the era of massive renewable energy deployment to the era of cheaper energy needed has made scientists and developers more careful with respect to energy planning compared with a few years ago. The focus is—and will be—placed on retrofitting and on extracting the maximum amount of locally generated energy. The question is not only how much energy can be generated, but also what kind of energy and how it can be utilized efficiently. The waste heat coming from wind farms (WFs) when in operation—which until now was wasted—was thoroughly studied. A short-term forecasting methodology that can provide the operator with a better view of the expected heat losses is presented. The majority of mechanical (due to friction) and electro-thermal (i.e., generator) losses takes place at the nacelle while a smaller part of this thermal source is located near the foundation of the wind turbine (WT) where the power electronics and the transformers are usually located. That thermal load can be easily collected via a working fluid and then be transported to the nearest local community or nearby agricultural or small scale industrial units using the necessary piping.