A turbine power upgrade is only complete once you quantified the performance increase. Through our years of experience with our Vortex Generators we we developed and fine tuned a methodology which can reliably calculate the power increase after any kind of upgrade.
Big Data Analysis
We strongly believe that using the standard 10min SCADA data does not yield in a satisfying accuracy of the result. This is why we explore the full potential of high resolution SCADA data.
Other Key elements of the Method
- Use of high resolution SCADA data.
- No use of nacelle anemometer data.
- Use of multiple test pairs to reduce the overall variance of the result.
- Careful selection of turbine pairs in terms of in-flow conditions and operational history.
- Comparison of power outputs of two neighboring turbines, before and after the upgrade.
- Successfully reviewed by DNV-GL in several projects.
- Successfully validated against scientific TAMU method.
Power vs. Power
We directly compare the power output of two turbines. No relation to wind speed is being made. The underlying assumption is simple yet crucial: the turbines must see the same inflow and do the same thing at the same time. That is why we take so much care in verifying this assumption. A wind farm is a complex system. Changes to the wind turbines are frequently made. It is our task to identify these changes and establish a solid base for reference.
Comparison to other methods
- IEC power curves: IEC power curve measurements can only be done for a very few selected turbines, which fulfill the strict requirements of the IEC 61400-12-1. Therefore only a limited amount of test pairs can be installed and a met mast is required. Furthermore, the absolute of a power curve accuracy is not good enough.
- Nacelle power curves: The use of nacelle power curves is not recommended at all. Any performance upgrade will have an effect on the nacelle anemometer behind the rotor. This means any comparability before and after the upgrade is lost.
- LIDAR: LIDARs are still very expensive. Thus, they can only be installed on very few test turbines. In order to correctly account for seasonal influences, another LIDAR must be installed on a control turbine in parallel.
- iSpin: The iSpin offers a good alternative to the LIDAR, but still requires the installation of additional hardware.
Compared to the other performance evaluation methodologies, the power vs. power method is the most cost-effective way to verify the AEP gain of a performance upgrade.